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Abstract: In this paper we introduced an inverse problem of symmetric beam with two free ends. 
When the circular frequency and the symmetric mode were given, we discussed when the density 
function of the symmetric beam was symmetric polynomial type function, how to construct the 
stiffness function for the same symmetric polynomial function. 

1. Introduction 
For the transverse vibration of Euler beam, Euler established the well-known Euler beam modal 

equation and gave the classical solution. In 2001, Elishakoff I. put forward a new solution [1,2]. The 
displacement function, density function and stiffness function in the modal equation of Euler beam 
are all set as polynomial functions, but they have different orders. This method is called the inverse 
problem of structural vibration, which can be applied to many kinds of one-dimensional elastic 
structures [3-7]. 

In Ref. [8, 9], symmetric one-dimensional elastic structures are researched. A new kind of 
symmetric multi-span beam, i.e. the inverse problem in vibration of symmetric two-span beam with 
two free ends, is researched in this paper. In daily life, teeterboard and shoulder pole can be 
regarded as symmetric two-span beam with two free ends. 

2. Statement of the problem 
The dimensionless dynamic equation for the transverse vibration of an Euler beam with a length 

of l is: 
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In the above differential equation, the independent variable lx /=x  is a dimensionless axial 
coordinate, )()()( ξξξ IEr =  is stiffness function, )(ξE  is Young's modulus, )(ξI  is moment of 
inertia of a section, )(ξW  is displacement mode, 42 Alωl =  is eigenvalue for this problem, ω is 
circular frequency, A is cross-sectional area, )(ξρ  is density function. To the symmetric two-span 
beam with two free ends, there is a support at the mid-point 2/1=ξ  as shown in Figure 1. 

 
Fig. 1 Symmetric Two-Span Beam with Two Free Ends 

To the symmetric mode of symmetric two-span beam with two free ends, there are the following 
boundary conditions [10] and constraint condition: 

,0])1()1([,0)1()1(,0])0()0([,0)0()0( =′′′=′′=′′′=′′ WrWrWrWr          (2) 
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Since when Young's modulus is zero, there is no physical meaning, so the equation (2) is 
equivalent to 

.0)1(,0)1(,0)0(,0)0( =′′′=′′=′′′=′′ WWWW                  (4) 

From the symmetry of mode, there is 

).1()0( WW =                                  (5) 

To meet the requirements (3), (4) and (5), displacement polynomial can be taken as six-order 
polynomial. It is assumed that 
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The displacement polynomial satisfying the requirement conditions is obtained as: 

).641921603211()( 654 ξξξξξ +−+−= BW sy                     (7) 

Here, 64/6WB =  is arbitrary nonzero constant, superscript sy  represents symmetric mode of 
vibration. 

By simplification, the formula (7) can be reduced to the following symmetric polynomial 
function: 

].)1(64)1(32)1(3211[)( 3322 ξξξξξξξ −−−−−−= BW sy                 (8) 

According to Ref. [8], the density function )(ξρ  and stiffness function )(ξr  of symmetric 
two-span beam with two free ends which are symmetric to mid-point 2/1=ξ  can be set to 
symmetric polynomial functions as: 
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In the above formulas, m and n are positive integers. The first item on the left side of equation (1) 
contains the four-order derivative, and therefore 2+= mn . 

In this paper, when the density function )(ξρ , displacement mode )(ξsyW  and inherent 
circular frequency ω  are all known, the stiffness function )(ξr  can be resolved. 

3. Stiffness function of symmetric two-span beam with two free ends from symmetric mode 
and given density function 

It can be verified that: 
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From formula (7), it can be calculated as the result of: 

.)1(1920)( 22 ξξξ −=′′ BW sy                              (11) 

When the formulas )(),( ξξρ ρ  and )(ξsyW ′′  substitute into Equation (1), and eliminate the 
nonzero constant B, we obtain: 
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Note )1( ξξ −=t , from Equation (10), we obtain: 
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For arbitrary ]1,0[∈ξ , i.e. ]25.0,0[∈t , Equation (13) is established. By using the comparison 
coefficient method of polynomials, we can obtain: 

,1920/11)12( 00 λab =×                                                           (14) 

,1920/)1132()23()34( 1010 λaabb +−=×+×−                                        (15) 

,1920/)113232()34()56( 21021 λaaabb +−−=×+×−                                   (16) 

),,,4,3(,1920/)11323264()1)(2()12)(22( 1231 miaaaabiibii iiiiii =+−−−=+++++− −−−− λ (17)   
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.1920/)64()72)(82( 2 λmm abmm −=++− +                                            (20) 

The above equations can be written as matrix equation as: 

.1920 ACBD ⋅=⋅ λ                              (21) 

Here, 

,
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Among them, D is a matrix with 4+m  row, 3+m  column, C is another matrix with 4+m  
row and 1+m  column. B is a 3+m  dimension column vector, A is another 1+m  dimension 
column vector. The generalized inverse matrix X  of matrix D  is introduced, formula (21) 
changed to: 

.1920/ ACXB ⋅⋅= λ                               (22) 
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4. Example 
If 4=m , formula (21) changed to: 
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For formula (22), using Matlab programming, we can obtain: 

.

0.2667     0.0000     0.0000     0.0000    0.0000
0.2579     0.3516     0.0000     0.0000    0.0000
0.3245     0.3543     0.4848     0.0000    0.0000
0.0141-    0.4737     0.5172     0.7111    0.0001
0.0050-   0.0273-    0.7561     0.8255    1.1434
0.0020-   0.0109-    0.0641-    1.3973    1.5285
0.0010-   0.0053-   0.0312-   0.2121-   3.4868
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Following the method in Ref. [9], if )4,3,2,1,0( =iai are all positive, then 
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and the proof procedure will not given in details. 

5. Conclusion 
In this paper, the method of inverse problem in vibration of Euler beam is successfully 

generalized to a new multi-span beam structure, i.e. symmetric two-span beam with two free ends. 
When the symmetric mode as polynomial function and the circular frequency are known, this paper 
discussed how to construct the stiffness function of the beam as symmetric polynomial function 
when the density function of the beam is given as the symmetric polynomial function. An example 
is given to discuss the positive value of the density function and the stiffness function. 
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